| File: | libs/opus-1.1-p2/celt/bands.c |
| Location: | line 595, column 12 |
| Description: | Assigned value is garbage or undefined |
| 1 | /* Copyright (c) 2007-2008 CSIRO | |||
| 2 | Copyright (c) 2007-2009 Xiph.Org Foundation | |||
| 3 | Copyright (c) 2008-2009 Gregory Maxwell | |||
| 4 | Written by Jean-Marc Valin and Gregory Maxwell */ | |||
| 5 | /* | |||
| 6 | Redistribution and use in source and binary forms, with or without | |||
| 7 | modification, are permitted provided that the following conditions | |||
| 8 | are met: | |||
| 9 | ||||
| 10 | - Redistributions of source code must retain the above copyright | |||
| 11 | notice, this list of conditions and the following disclaimer. | |||
| 12 | ||||
| 13 | - Redistributions in binary form must reproduce the above copyright | |||
| 14 | notice, this list of conditions and the following disclaimer in the | |||
| 15 | documentation and/or other materials provided with the distribution. | |||
| 16 | ||||
| 17 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |||
| 18 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |||
| 19 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |||
| 20 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | |||
| 21 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |||
| 22 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |||
| 23 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |||
| 24 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |||
| 25 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |||
| 26 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |||
| 27 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
| 28 | */ | |||
| 29 | ||||
| 30 | #ifdef HAVE_CONFIG_H1 | |||
| 31 | #include "config.h" | |||
| 32 | #endif | |||
| 33 | ||||
| 34 | #include <math.h> | |||
| 35 | #include "bands.h" | |||
| 36 | #include "modes.h" | |||
| 37 | #include "vq.h" | |||
| 38 | #include "cwrs.h" | |||
| 39 | #include "stack_alloc.h" | |||
| 40 | #include "os_support.h" | |||
| 41 | #include "mathops.h" | |||
| 42 | #include "rate.h" | |||
| 43 | #include "quant_bands.h" | |||
| 44 | #include "pitch.h" | |||
| 45 | ||||
| 46 | int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev) | |||
| 47 | { | |||
| 48 | int i; | |||
| 49 | for (i=0;i<N;i++) | |||
| 50 | { | |||
| 51 | if (val < thresholds[i]) | |||
| 52 | break; | |||
| 53 | } | |||
| 54 | if (i>prev && val < thresholds[prev]+hysteresis[prev]) | |||
| 55 | i=prev; | |||
| 56 | if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1]) | |||
| 57 | i=prev; | |||
| 58 | return i; | |||
| 59 | } | |||
| 60 | ||||
| 61 | opus_uint32 celt_lcg_rand(opus_uint32 seed) | |||
| 62 | { | |||
| 63 | return 1664525 * seed + 1013904223; | |||
| 64 | } | |||
| 65 | ||||
| 66 | /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness | |||
| 67 | with this approximation is important because it has an impact on the bit allocation */ | |||
| 68 | static opus_int16 bitexact_cos(opus_int16 x) | |||
| 69 | { | |||
| 70 | opus_int32 tmp; | |||
| 71 | opus_int16 x2; | |||
| 72 | tmp = (4096+((opus_int32)(x)*(x)))>>13; | |||
| 73 | celt_assert(tmp<=32767); | |||
| 74 | x2 = tmp; | |||
| 75 | x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))))((16384+((opus_int32)(opus_int16)(x2)*(opus_int16)((-7651 + ( (16384+((opus_int32)(opus_int16)(x2)*(opus_int16)((8277 + ((16384 +((opus_int32)(opus_int16)(-626)*(opus_int16)(x2)))>>15 )))))>>15)))))>>15); | |||
| 76 | celt_assert(x2<=32766); | |||
| 77 | return 1+x2; | |||
| 78 | } | |||
| 79 | ||||
| 80 | static int bitexact_log2tan(int isin,int icos) | |||
| 81 | { | |||
| 82 | int lc; | |||
| 83 | int ls; | |||
| 84 | lc=EC_ILOG(icos)(((int)sizeof(unsigned)*8)-(__builtin_clz(icos))); | |||
| 85 | ls=EC_ILOG(isin)(((int)sizeof(unsigned)*8)-(__builtin_clz(isin))); | |||
| 86 | icos<<=15-lc; | |||
| 87 | isin<<=15-ls; | |||
| 88 | return (ls-lc)*(1<<11) | |||
| 89 | +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)((16384+((opus_int32)(opus_int16)(isin)*(opus_int16)(((16384+ ((opus_int32)(opus_int16)(isin)*(opus_int16)(-2597)))>> 15) + 7932)))>>15) | |||
| 90 | -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932)((16384+((opus_int32)(opus_int16)(icos)*(opus_int16)(((16384+ ((opus_int32)(opus_int16)(icos)*(opus_int16)(-2597)))>> 15) + 7932)))>>15); | |||
| 91 | } | |||
| 92 | ||||
| 93 | #ifdef FIXED_POINT | |||
| 94 | /* Compute the amplitude (sqrt energy) in each of the bands */ | |||
| 95 | void compute_band_energies(const CELTModeOpusCustomMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) | |||
| 96 | { | |||
| 97 | int i, c, N; | |||
| 98 | const opus_int16 *eBands = m->eBands; | |||
| 99 | N = M*m->shortMdctSize; | |||
| 100 | c=0; do { | |||
| 101 | for (i=0;i<end;i++) | |||
| 102 | { | |||
| 103 | int j; | |||
| 104 | opus_val32 maxval=0; | |||
| 105 | opus_val32 sum = 0; | |||
| 106 | ||||
| 107 | j=M*eBands[i]; do { | |||
| 108 | maxval = MAX32(maxval, X[j+c*N])((maxval) > (X[j+c*N]) ? (maxval) : (X[j+c*N])); | |||
| 109 | maxval = MAX32(maxval, -X[j+c*N])((maxval) > (-X[j+c*N]) ? (maxval) : (-X[j+c*N])); | |||
| 110 | } while (++j<M*eBands[i+1]); | |||
| 111 | ||||
| 112 | if (maxval > 0) | |||
| 113 | { | |||
| 114 | int shift = celt_ilog2(maxval)-10; | |||
| 115 | j=M*eBands[i]; do { | |||
| 116 | sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),((sum)+(opus_val32)(((X[j+c*N])))*(opus_val32)(((X[j+c*N])))) | |||
| 117 | EXTRACT16(VSHR32(X[j+c*N],shift)))((sum)+(opus_val32)(((X[j+c*N])))*(opus_val32)(((X[j+c*N])))); | |||
| 118 | } while (++j<M*eBands[i+1]); | |||
| 119 | /* We're adding one here to ensure the normalized band isn't larger than unity norm */ | |||
| 120 | bandE[i+c*m->nbEBands] = EPSILON1e-15f+VSHR32(EXTEND32(celt_sqrt(sum)),-shift)((((float)sqrt(sum)))); | |||
| 121 | } else { | |||
| 122 | bandE[i+c*m->nbEBands] = EPSILON1e-15f; | |||
| 123 | } | |||
| 124 | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ | |||
| 125 | } | |||
| 126 | } while (++c<C); | |||
| 127 | /*printf ("\n");*/ | |||
| 128 | } | |||
| 129 | ||||
| 130 | /* Normalise each band such that the energy is one. */ | |||
| 131 | void normalise_bands(const CELTModeOpusCustomMode *m, const celt_sig * OPUS_RESTRICT__restrict freq, celt_norm * OPUS_RESTRICT__restrict X, const celt_ener *bandE, int end, int C, int M) | |||
| 132 | { | |||
| 133 | int i, c, N; | |||
| 134 | const opus_int16 *eBands = m->eBands; | |||
| 135 | N = M*m->shortMdctSize; | |||
| 136 | c=0; do { | |||
| 137 | i=0; do { | |||
| 138 | opus_val16 g; | |||
| 139 | int j,shift; | |||
| 140 | opus_val16 E; | |||
| 141 | shift = celt_zlog2(bandE[i+c*m->nbEBands])-13; | |||
| 142 | E = VSHR32(bandE[i+c*m->nbEBands], shift)(bandE[i+c*m->nbEBands]); | |||
| 143 | g = EXTRACT16(celt_rcp(SHL32(E,3)))((1.f/((E)))); | |||
| 144 | j=M*eBands[i]; do { | |||
| 145 | X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g)(((freq[j+c*N]))*(g)); | |||
| 146 | } while (++j<M*eBands[i+1]); | |||
| 147 | } while (++i<end); | |||
| 148 | } while (++c<C); | |||
| 149 | } | |||
| 150 | ||||
| 151 | #else /* FIXED_POINT */ | |||
| 152 | /* Compute the amplitude (sqrt energy) in each of the bands */ | |||
| 153 | void compute_band_energies(const CELTModeOpusCustomMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M) | |||
| 154 | { | |||
| 155 | int i, c, N; | |||
| 156 | const opus_int16 *eBands = m->eBands; | |||
| 157 | N = M*m->shortMdctSize; | |||
| 158 | c=0; do { | |||
| 159 | for (i=0;i<end;i++) | |||
| 160 | { | |||
| 161 | int j; | |||
| 162 | opus_val32 sum = 1e-27f; | |||
| 163 | for (j=M*eBands[i];j<M*eBands[i+1];j++) | |||
| 164 | sum += X[j+c*N]*X[j+c*N]; | |||
| 165 | bandE[i+c*m->nbEBands] = celt_sqrt(sum)((float)sqrt(sum)); | |||
| 166 | /*printf ("%f ", bandE[i+c*m->nbEBands]);*/ | |||
| 167 | } | |||
| 168 | } while (++c<C); | |||
| 169 | /*printf ("\n");*/ | |||
| 170 | } | |||
| 171 | ||||
| 172 | /* Normalise each band such that the energy is one. */ | |||
| 173 | void normalise_bands(const CELTModeOpusCustomMode *m, const celt_sig * OPUS_RESTRICT__restrict freq, celt_norm * OPUS_RESTRICT__restrict X, const celt_ener *bandE, int end, int C, int M) | |||
| 174 | { | |||
| 175 | int i, c, N; | |||
| 176 | const opus_int16 *eBands = m->eBands; | |||
| 177 | N = M*m->shortMdctSize; | |||
| 178 | c=0; do { | |||
| 179 | for (i=0;i<end;i++) | |||
| 180 | { | |||
| 181 | int j; | |||
| 182 | opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]); | |||
| 183 | for (j=M*eBands[i];j<M*eBands[i+1];j++) | |||
| 184 | X[j+c*N] = freq[j+c*N]*g; | |||
| 185 | } | |||
| 186 | } while (++c<C); | |||
| 187 | } | |||
| 188 | ||||
| 189 | #endif /* FIXED_POINT */ | |||
| 190 | ||||
| 191 | /* De-normalise the energy to produce the synthesis from the unit-energy bands */ | |||
| 192 | void denormalise_bands(const CELTModeOpusCustomMode *m, const celt_norm * OPUS_RESTRICT__restrict X, | |||
| 193 | celt_sig * OPUS_RESTRICT__restrict freq, const opus_val16 *bandLogE, int start, int end, int C, int M) | |||
| 194 | { | |||
| 195 | int i, c, N; | |||
| 196 | const opus_int16 *eBands = m->eBands; | |||
| 197 | N = M*m->shortMdctSize; | |||
| 198 | celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels"); | |||
| 199 | c=0; do { | |||
| 200 | celt_sig * OPUS_RESTRICT__restrict f; | |||
| 201 | const celt_norm * OPUS_RESTRICT__restrict x; | |||
| 202 | f = freq+c*N; | |||
| 203 | x = X+c*N+M*eBands[start]; | |||
| 204 | for (i=0;i<M*eBands[start];i++) | |||
| 205 | *f++ = 0; | |||
| 206 | for (i=start;i<end;i++) | |||
| 207 | { | |||
| 208 | int j, band_end; | |||
| 209 | opus_val16 g; | |||
| 210 | opus_val16 lg; | |||
| 211 | #ifdef FIXED_POINT | |||
| 212 | int shift; | |||
| 213 | #endif | |||
| 214 | j=M*eBands[i]; | |||
| 215 | band_end = M*eBands[i+1]; | |||
| 216 | lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6))((bandLogE[i+c*m->nbEBands])+(((opus_val16)eMeans[i]))); | |||
| 217 | #ifndef FIXED_POINT | |||
| 218 | g = celt_exp2(lg)((float)exp(0.6931471805599453094*(lg))); | |||
| 219 | #else | |||
| 220 | /* Handle the integer part of the log energy */ | |||
| 221 | shift = 16-(lg>>DB_SHIFT); | |||
| 222 | if (shift>31) | |||
| 223 | { | |||
| 224 | shift=0; | |||
| 225 | g=0; | |||
| 226 | } else { | |||
| 227 | /* Handle the fractional part. */ | |||
| 228 | g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1)); | |||
| 229 | } | |||
| 230 | /* Handle extreme gains with negative shift. */ | |||
| 231 | if (shift<0) | |||
| 232 | { | |||
| 233 | /* For shift < -2 we'd be likely to overflow, so we're capping | |||
| 234 | the gain here. This shouldn't happen unless the bitstream is | |||
| 235 | already corrupted. */ | |||
| 236 | if (shift < -2) | |||
| 237 | { | |||
| 238 | g = 32767; | |||
| 239 | shift = -2; | |||
| 240 | } | |||
| 241 | do { | |||
| 242 | *f++ = SHL32(MULT16_16(*x++, g), -shift)(((opus_val32)(*x++)*(opus_val32)(g))); | |||
| 243 | } while (++j<band_end); | |||
| 244 | } else | |||
| 245 | #endif | |||
| 246 | /* Be careful of the fixed-point "else" just above when changing this code */ | |||
| 247 | do { | |||
| 248 | *f++ = SHR32(MULT16_16(*x++, g), shift)(((opus_val32)(*x++)*(opus_val32)(g))); | |||
| 249 | } while (++j<band_end); | |||
| 250 | } | |||
| 251 | celt_assert(start <= end); | |||
| 252 | for (i=M*eBands[end];i<N;i++) | |||
| 253 | *f++ = 0; | |||
| 254 | } while (++c<C); | |||
| 255 | } | |||
| 256 | ||||
| 257 | /* This prevents energy collapse for transients with multiple short MDCTs */ | |||
| 258 | void anti_collapse(const CELTModeOpusCustomMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size, | |||
| 259 | int start, int end, opus_val16 *logE, opus_val16 *prev1logE, | |||
| 260 | opus_val16 *prev2logE, int *pulses, opus_uint32 seed) | |||
| 261 | { | |||
| 262 | int c, i, j, k; | |||
| 263 | for (i=start;i<end;i++) | |||
| 264 | { | |||
| 265 | int N0; | |||
| 266 | opus_val16 thresh, sqrt_1; | |||
| 267 | int depth; | |||
| 268 | #ifdef FIXED_POINT | |||
| 269 | int shift; | |||
| 270 | opus_val32 thresh32; | |||
| 271 | #endif | |||
| 272 | ||||
| 273 | N0 = m->eBands[i+1]-m->eBands[i]; | |||
| 274 | /* depth in 1/8 bits */ | |||
| 275 | depth = (1+pulses[i])/((m->eBands[i+1]-m->eBands[i])<<LM); | |||
| 276 | ||||
| 277 | #ifdef FIXED_POINT | |||
| 278 | thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1)(((float)exp(0.6931471805599453094*(-(depth))))); | |||
| 279 | thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32))(((0.5f))*(((32767) < (thresh32) ? (32767) : (thresh32)))); | |||
| 280 | { | |||
| 281 | opus_val32 t; | |||
| 282 | t = N0<<LM; | |||
| 283 | shift = celt_ilog2(t)>>1; | |||
| 284 | t = SHL32(t, (7-shift)<<1)(t); | |||
| 285 | sqrt_1 = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
| 286 | } | |||
| 287 | #else | |||
| 288 | thresh = .5f*celt_exp2(-.125f*depth)((float)exp(0.6931471805599453094*(-.125f*depth))); | |||
| 289 | sqrt_1 = celt_rsqrt(N0<<LM)(1.f/((float)sqrt(N0<<LM))); | |||
| 290 | #endif | |||
| 291 | ||||
| 292 | c=0; do | |||
| 293 | { | |||
| 294 | celt_norm *X; | |||
| 295 | opus_val16 prev1; | |||
| 296 | opus_val16 prev2; | |||
| 297 | opus_val32 Ediff; | |||
| 298 | opus_val16 r; | |||
| 299 | int renormalize=0; | |||
| 300 | prev1 = prev1logE[c*m->nbEBands+i]; | |||
| 301 | prev2 = prev2logE[c*m->nbEBands+i]; | |||
| 302 | if (C==1) | |||
| 303 | { | |||
| 304 | prev1 = MAX16(prev1,prev1logE[m->nbEBands+i])((prev1) > (prev1logE[m->nbEBands+i]) ? (prev1) : (prev1logE [m->nbEBands+i])); | |||
| 305 | prev2 = MAX16(prev2,prev2logE[m->nbEBands+i])((prev2) > (prev2logE[m->nbEBands+i]) ? (prev2) : (prev2logE [m->nbEBands+i])); | |||
| 306 | } | |||
| 307 | Ediff = EXTEND32(logE[c*m->nbEBands+i])(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2))(((prev1) < (prev2) ? (prev1) : (prev2))); | |||
| 308 | Ediff = MAX32(0, Ediff)((0) > (Ediff) ? (0) : (Ediff)); | |||
| 309 | ||||
| 310 | #ifdef FIXED_POINT | |||
| 311 | if (Ediff < 16384) | |||
| 312 | { | |||
| 313 | opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1)(((float)exp(0.6931471805599453094*(-(Ediff))))); | |||
| 314 | r = 2*MIN16(16383,r32)((16383) < (r32) ? (16383) : (r32)); | |||
| 315 | } else { | |||
| 316 | r = 0; | |||
| 317 | } | |||
| 318 | if (LM==3) | |||
| 319 | r = MULT16_16_Q14(23170, MIN32(23169, r))((23170)*(((23169) < (r) ? (23169) : (r)))); | |||
| 320 | r = SHR16(MIN16(thresh, r),1)(((thresh) < (r) ? (thresh) : (r))); | |||
| 321 | r = SHR32(MULT16_16_Q15(sqrt_1, r),shift)(((sqrt_1)*(r))); | |||
| 322 | #else | |||
| 323 | /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because | |||
| 324 | short blocks don't have the same energy as long */ | |||
| 325 | r = 2.f*celt_exp2(-Ediff)((float)exp(0.6931471805599453094*(-Ediff))); | |||
| 326 | if (LM==3) | |||
| 327 | r *= 1.41421356f; | |||
| 328 | r = MIN16(thresh, r)((thresh) < (r) ? (thresh) : (r)); | |||
| 329 | r = r*sqrt_1; | |||
| 330 | #endif | |||
| 331 | X = X_+c*size+(m->eBands[i]<<LM); | |||
| 332 | for (k=0;k<1<<LM;k++) | |||
| 333 | { | |||
| 334 | /* Detect collapse */ | |||
| 335 | if (!(collapse_masks[i*C+c]&1<<k)) | |||
| 336 | { | |||
| 337 | /* Fill with noise */ | |||
| 338 | for (j=0;j<N0;j++) | |||
| 339 | { | |||
| 340 | seed = celt_lcg_rand(seed); | |||
| 341 | X[(j<<LM)+k] = (seed&0x8000 ? r : -r); | |||
| 342 | } | |||
| 343 | renormalize = 1; | |||
| 344 | } | |||
| 345 | } | |||
| 346 | /* We just added some energy, so we need to renormalise */ | |||
| 347 | if (renormalize) | |||
| 348 | renormalise_vector(X, N0<<LM, Q15ONE1.0f); | |||
| 349 | } while (++c<C); | |||
| 350 | } | |||
| 351 | } | |||
| 352 | ||||
| 353 | static void intensity_stereo(const CELTModeOpusCustomMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bandE, int bandID, int N) | |||
| 354 | { | |||
| 355 | int i = bandID; | |||
| 356 | int j; | |||
| 357 | opus_val16 a1, a2; | |||
| 358 | opus_val16 left, right; | |||
| 359 | opus_val16 norm; | |||
| 360 | #ifdef FIXED_POINT | |||
| 361 | int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands])((bandE[i]) > (bandE[i+m->nbEBands]) ? (bandE[i]) : (bandE [i+m->nbEBands])))-13; | |||
| 362 | #endif | |||
| 363 | left = VSHR32(bandE[i],shift)(bandE[i]); | |||
| 364 | right = VSHR32(bandE[i+m->nbEBands],shift)(bandE[i+m->nbEBands]); | |||
| 365 | norm = EPSILON1e-15f + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right))((float)sqrt(1e-15f +((opus_val32)(left)*(opus_val32)(left))+ ((opus_val32)(right)*(opus_val32)(right)))); | |||
| 366 | a1 = DIV32_16(SHL32(EXTEND32(left),14),norm)(((opus_val32)(((left))))/(opus_val16)(norm)); | |||
| 367 | a2 = DIV32_16(SHL32(EXTEND32(right),14),norm)(((opus_val32)(((right))))/(opus_val16)(norm)); | |||
| 368 | for (j=0;j<N;j++) | |||
| 369 | { | |||
| 370 | celt_norm r, l; | |||
| 371 | l = X[j]; | |||
| 372 | r = Y[j]; | |||
| 373 | X[j] = MULT16_16_Q14(a1,l)((a1)*(l)) + MULT16_16_Q14(a2,r)((a2)*(r)); | |||
| 374 | /* Side is not encoded, no need to calculate */ | |||
| 375 | } | |||
| 376 | } | |||
| 377 | ||||
| 378 | static void stereo_split(celt_norm *X, celt_norm *Y, int N) | |||
| 379 | { | |||
| 380 | int j; | |||
| 381 | for (j=0;j<N;j++) | |||
| 382 | { | |||
| 383 | celt_norm r, l; | |||
| 384 | l = MULT16_16_Q15(QCONST16(.70710678f,15), X[j])(((.70710678f))*(X[j])); | |||
| 385 | r = MULT16_16_Q15(QCONST16(.70710678f,15), Y[j])(((.70710678f))*(Y[j])); | |||
| 386 | X[j] = l+r; | |||
| 387 | Y[j] = r-l; | |||
| 388 | } | |||
| 389 | } | |||
| 390 | ||||
| 391 | static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N) | |||
| 392 | { | |||
| 393 | int j; | |||
| 394 | opus_val32 xp=0, side=0; | |||
| 395 | opus_val32 El, Er; | |||
| 396 | opus_val16 mid2; | |||
| 397 | #ifdef FIXED_POINT | |||
| 398 | int kl, kr; | |||
| 399 | #endif | |||
| 400 | opus_val32 t, lgain, rgain; | |||
| 401 | ||||
| 402 | /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */ | |||
| 403 | dual_inner_prod(Y, X, Y, N, &xp, &side); | |||
| 404 | /* Compensating for the mid normalization */ | |||
| 405 | xp = MULT16_32_Q15(mid, xp)((mid)*(xp)); | |||
| 406 | /* mid and side are in Q15, not Q14 like X and Y */ | |||
| 407 | mid2 = SHR32(mid, 1)(mid); | |||
| 408 | El = MULT16_16(mid2, mid2)((opus_val32)(mid2)*(opus_val32)(mid2)) + side - 2*xp; | |||
| 409 | Er = MULT16_16(mid2, mid2)((opus_val32)(mid2)*(opus_val32)(mid2)) + side + 2*xp; | |||
| 410 | if (Er < QCONST32(6e-4f, 28)(6e-4f) || El < QCONST32(6e-4f, 28)(6e-4f)) | |||
| 411 | { | |||
| 412 | for (j=0;j<N;j++) | |||
| 413 | Y[j] = X[j]; | |||
| 414 | return; | |||
| 415 | } | |||
| 416 | ||||
| 417 | #ifdef FIXED_POINT | |||
| 418 | kl = celt_ilog2(El)>>1; | |||
| 419 | kr = celt_ilog2(Er)>>1; | |||
| 420 | #endif | |||
| 421 | t = VSHR32(El, (kl-7)<<1)(El); | |||
| 422 | lgain = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
| 423 | t = VSHR32(Er, (kr-7)<<1)(Er); | |||
| 424 | rgain = celt_rsqrt_norm(t)((1.f/((float)sqrt(t)))); | |||
| 425 | ||||
| 426 | #ifdef FIXED_POINT | |||
| 427 | if (kl < 7) | |||
| 428 | kl = 7; | |||
| 429 | if (kr < 7) | |||
| 430 | kr = 7; | |||
| 431 | #endif | |||
| 432 | ||||
| 433 | for (j=0;j<N;j++) | |||
| 434 | { | |||
| 435 | celt_norm r, l; | |||
| 436 | /* Apply mid scaling (side is already scaled) */ | |||
| 437 | l = MULT16_16_Q15(mid, X[j])((mid)*(X[j])); | |||
| 438 | r = Y[j]; | |||
| 439 | X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1))((((opus_val32)(lgain)*(opus_val32)(((l)-(r)))))); | |||
| 440 | Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1))((((opus_val32)(rgain)*(opus_val32)(((l)+(r)))))); | |||
| 441 | } | |||
| 442 | } | |||
| 443 | ||||
| 444 | /* Decide whether we should spread the pulses in the current frame */ | |||
| 445 | int spreading_decision(const CELTModeOpusCustomMode *m, celt_norm *X, int *average, | |||
| 446 | int last_decision, int *hf_average, int *tapset_decision, int update_hf, | |||
| 447 | int end, int C, int M) | |||
| 448 | { | |||
| 449 | int i, c, N0; | |||
| 450 | int sum = 0, nbBands=0; | |||
| 451 | const opus_int16 * OPUS_RESTRICT__restrict eBands = m->eBands; | |||
| 452 | int decision; | |||
| 453 | int hf_sum=0; | |||
| 454 | ||||
| 455 | celt_assert(end>0); | |||
| 456 | ||||
| 457 | N0 = M*m->shortMdctSize; | |||
| 458 | ||||
| 459 | if (M*(eBands[end]-eBands[end-1]) <= 8) | |||
| 460 | return SPREAD_NONE(0); | |||
| 461 | c=0; do { | |||
| 462 | for (i=0;i<end;i++) | |||
| 463 | { | |||
| 464 | int j, N, tmp=0; | |||
| 465 | int tcount[3] = {0,0,0}; | |||
| 466 | celt_norm * OPUS_RESTRICT__restrict x = X+M*eBands[i]+c*N0; | |||
| 467 | N = M*(eBands[i+1]-eBands[i]); | |||
| 468 | if (N<=8) | |||
| 469 | continue; | |||
| 470 | /* Compute rough CDF of |x[j]| */ | |||
| 471 | for (j=0;j<N;j++) | |||
| 472 | { | |||
| 473 | opus_val32 x2N; /* Q13 */ | |||
| 474 | ||||
| 475 | x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N)((opus_val32)(((x[j])*(x[j])))*(opus_val32)(N)); | |||
| 476 | if (x2N < QCONST16(0.25f,13)(0.25f)) | |||
| 477 | tcount[0]++; | |||
| 478 | if (x2N < QCONST16(0.0625f,13)(0.0625f)) | |||
| 479 | tcount[1]++; | |||
| 480 | if (x2N < QCONST16(0.015625f,13)(0.015625f)) | |||
| 481 | tcount[2]++; | |||
| 482 | } | |||
| 483 | ||||
| 484 | /* Only include four last bands (8 kHz and up) */ | |||
| 485 | if (i>m->nbEBands-4) | |||
| 486 | hf_sum += 32*(tcount[1]+tcount[0])/N; | |||
| 487 | tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N); | |||
| 488 | sum += tmp*256; | |||
| 489 | nbBands++; | |||
| 490 | } | |||
| 491 | } while (++c<C); | |||
| 492 | ||||
| 493 | if (update_hf) | |||
| 494 | { | |||
| 495 | if (hf_sum) | |||
| 496 | hf_sum /= C*(4-m->nbEBands+end); | |||
| 497 | *hf_average = (*hf_average+hf_sum)>>1; | |||
| 498 | hf_sum = *hf_average; | |||
| 499 | if (*tapset_decision==2) | |||
| 500 | hf_sum += 4; | |||
| 501 | else if (*tapset_decision==0) | |||
| 502 | hf_sum -= 4; | |||
| 503 | if (hf_sum > 22) | |||
| 504 | *tapset_decision=2; | |||
| 505 | else if (hf_sum > 18) | |||
| 506 | *tapset_decision=1; | |||
| 507 | else | |||
| 508 | *tapset_decision=0; | |||
| 509 | } | |||
| 510 | /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/ | |||
| 511 | celt_assert(nbBands>0); /* end has to be non-zero */ | |||
| 512 | sum /= nbBands; | |||
| 513 | /* Recursive averaging */ | |||
| 514 | sum = (sum+*average)>>1; | |||
| 515 | *average = sum; | |||
| 516 | /* Hysteresis */ | |||
| 517 | sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2; | |||
| 518 | if (sum < 80) | |||
| 519 | { | |||
| 520 | decision = SPREAD_AGGRESSIVE(3); | |||
| 521 | } else if (sum < 256) | |||
| 522 | { | |||
| 523 | decision = SPREAD_NORMAL(2); | |||
| 524 | } else if (sum < 384) | |||
| 525 | { | |||
| 526 | decision = SPREAD_LIGHT(1); | |||
| 527 | } else { | |||
| 528 | decision = SPREAD_NONE(0); | |||
| 529 | } | |||
| 530 | #ifdef FUZZING | |||
| 531 | decision = rand()&0x3; | |||
| 532 | *tapset_decision=rand()%3; | |||
| 533 | #endif | |||
| 534 | return decision; | |||
| 535 | } | |||
| 536 | ||||
| 537 | /* Indexing table for converting from natural Hadamard to ordery Hadamard | |||
| 538 | This is essentially a bit-reversed Gray, on top of which we've added | |||
| 539 | an inversion of the order because we want the DC at the end rather than | |||
| 540 | the beginning. The lines are for N=2, 4, 8, 16 */ | |||
| 541 | static const int ordery_table[] = { | |||
| 542 | 1, 0, | |||
| 543 | 3, 0, 2, 1, | |||
| 544 | 7, 0, 4, 3, 6, 1, 5, 2, | |||
| 545 | 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5, | |||
| 546 | }; | |||
| 547 | ||||
| 548 | static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) | |||
| 549 | { | |||
| 550 | int i,j; | |||
| 551 | VARDECL(celt_norm, tmp); | |||
| 552 | int N; | |||
| 553 | SAVE_STACK; | |||
| 554 | N = N0*stride; | |||
| 555 | ALLOC(tmp, N, celt_norm)celt_norm tmp[N]; | |||
| 556 | celt_assert(stride>0); | |||
| 557 | if (hadamard) | |||
| 558 | { | |||
| 559 | const int *ordery = ordery_table+stride-2; | |||
| 560 | for (i=0;i<stride;i++) | |||
| 561 | { | |||
| 562 | for (j=0;j<N0;j++) | |||
| 563 | tmp[ordery[i]*N0+j] = X[j*stride+i]; | |||
| 564 | } | |||
| 565 | } else { | |||
| 566 | for (i=0;i<stride;i++) | |||
| 567 | for (j=0;j<N0;j++) | |||
| 568 | tmp[i*N0+j] = X[j*stride+i]; | |||
| 569 | } | |||
| 570 | for (j=0;j<N;j++) | |||
| 571 | X[j] = tmp[j]; | |||
| 572 | RESTORE_STACK; | |||
| 573 | } | |||
| 574 | ||||
| 575 | static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard) | |||
| 576 | { | |||
| 577 | int i,j; | |||
| 578 | VARDECL(celt_norm, tmp); | |||
| 579 | int N; | |||
| 580 | SAVE_STACK; | |||
| 581 | N = N0*stride; | |||
| 582 | ALLOC(tmp, N, celt_norm)celt_norm tmp[N]; | |||
| 583 | if (hadamard) | |||
| 584 | { | |||
| 585 | const int *ordery = ordery_table+stride-2; | |||
| 586 | for (i=0;i<stride;i++) | |||
| 587 | for (j=0;j<N0;j++) | |||
| 588 | tmp[j*stride+i] = X[ordery[i]*N0+j]; | |||
| 589 | } else { | |||
| 590 | for (i=0;i<stride;i++) | |||
| 591 | for (j=0;j<N0;j++) | |||
| 592 | tmp[j*stride+i] = X[i*N0+j]; | |||
| 593 | } | |||
| 594 | for (j=0;j<N;j++) | |||
| 595 | X[j] = tmp[j]; | |||
| ||||
| 596 | RESTORE_STACK; | |||
| 597 | } | |||
| 598 | ||||
| 599 | void haar1(celt_norm *X, int N0, int stride) | |||
| 600 | { | |||
| 601 | int i, j; | |||
| 602 | N0 >>= 1; | |||
| 603 | for (i=0;i<stride;i++) | |||
| 604 | for (j=0;j<N0;j++) | |||
| 605 | { | |||
| 606 | celt_norm tmp1, tmp2; | |||
| 607 | tmp1 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*2*j+i])(((.70710678f))*(X[stride*2*j+i])); | |||
| 608 | tmp2 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*(2*j+1)+i])(((.70710678f))*(X[stride*(2*j+1)+i])); | |||
| 609 | X[stride*2*j+i] = tmp1 + tmp2; | |||
| 610 | X[stride*(2*j+1)+i] = tmp1 - tmp2; | |||
| 611 | } | |||
| 612 | } | |||
| 613 | ||||
| 614 | static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo) | |||
| 615 | { | |||
| 616 | static const opus_int16 exp2_table8[8] = | |||
| 617 | {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048}; | |||
| 618 | int qn, qb; | |||
| 619 | int N2 = 2*N-1; | |||
| 620 | if (stereo && N==2) | |||
| 621 | N2--; | |||
| 622 | /* The upper limit ensures that in a stereo split with itheta==16384, we'll | |||
| 623 | always have enough bits left over to code at least one pulse in the | |||
| 624 | side; otherwise it would collapse, since it doesn't get folded. */ | |||
| 625 | qb = IMIN(b-pulse_cap-(4<<BITRES), (b+N2*offset)/N2)((b-pulse_cap-(4<<3)) < ((b+N2*offset)/N2) ? (b-pulse_cap -(4<<3)) : ((b+N2*offset)/N2)); | |||
| 626 | ||||
| 627 | qb = IMIN(8<<BITRES, qb)((8<<3) < (qb) ? (8<<3) : (qb)); | |||
| 628 | ||||
| 629 | if (qb<(1<<BITRES3>>1)) { | |||
| 630 | qn = 1; | |||
| 631 | } else { | |||
| 632 | qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES3)); | |||
| 633 | qn = (qn+1)>>1<<1; | |||
| 634 | } | |||
| 635 | celt_assert(qn <= 256); | |||
| 636 | return qn; | |||
| 637 | } | |||
| 638 | ||||
| 639 | struct band_ctx { | |||
| 640 | int encode; | |||
| 641 | const CELTModeOpusCustomMode *m; | |||
| 642 | int i; | |||
| 643 | int intensity; | |||
| 644 | int spread; | |||
| 645 | int tf_change; | |||
| 646 | ec_ctx *ec; | |||
| 647 | opus_int32 remaining_bits; | |||
| 648 | const celt_ener *bandE; | |||
| 649 | opus_uint32 seed; | |||
| 650 | }; | |||
| 651 | ||||
| 652 | struct split_ctx { | |||
| 653 | int inv; | |||
| 654 | int imid; | |||
| 655 | int iside; | |||
| 656 | int delta; | |||
| 657 | int itheta; | |||
| 658 | int qalloc; | |||
| 659 | }; | |||
| 660 | ||||
| 661 | static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx, | |||
| 662 | celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0, | |||
| 663 | int LM, | |||
| 664 | int stereo, int *fill) | |||
| 665 | { | |||
| 666 | int qn; | |||
| 667 | int itheta=0; | |||
| 668 | int delta; | |||
| 669 | int imid, iside; | |||
| 670 | int qalloc; | |||
| 671 | int pulse_cap; | |||
| 672 | int offset; | |||
| 673 | opus_int32 tell; | |||
| 674 | int inv=0; | |||
| 675 | int encode; | |||
| 676 | const CELTModeOpusCustomMode *m; | |||
| 677 | int i; | |||
| 678 | int intensity; | |||
| 679 | ec_ctx *ec; | |||
| 680 | const celt_ener *bandE; | |||
| 681 | ||||
| 682 | encode = ctx->encode; | |||
| 683 | m = ctx->m; | |||
| 684 | i = ctx->i; | |||
| 685 | intensity = ctx->intensity; | |||
| 686 | ec = ctx->ec; | |||
| 687 | bandE = ctx->bandE; | |||
| 688 | ||||
| 689 | /* Decide on the resolution to give to the split parameter theta */ | |||
| 690 | pulse_cap = m->logN[i]+LM*(1<<BITRES3); | |||
| 691 | offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE16 : QTHETA_OFFSET4); | |||
| 692 | qn = compute_qn(N, *b, offset, pulse_cap, stereo); | |||
| 693 | if (stereo && i>=intensity) | |||
| 694 | qn = 1; | |||
| 695 | if (encode) | |||
| 696 | { | |||
| 697 | /* theta is the atan() of the ratio between the (normalized) | |||
| 698 | side and mid. With just that parameter, we can re-scale both | |||
| 699 | mid and side because we know that 1) they have unit norm and | |||
| 700 | 2) they are orthogonal. */ | |||
| 701 | itheta = stereo_itheta(X, Y, stereo, N); | |||
| 702 | } | |||
| 703 | tell = ec_tell_frac(ec); | |||
| 704 | if (qn!=1) | |||
| 705 | { | |||
| 706 | if (encode) | |||
| 707 | itheta = (itheta*qn+8192)>>14; | |||
| 708 | ||||
| 709 | /* Entropy coding of the angle. We use a uniform pdf for the | |||
| 710 | time split, a step for stereo, and a triangular one for the rest. */ | |||
| 711 | if (stereo && N>2) | |||
| 712 | { | |||
| 713 | int p0 = 3; | |||
| 714 | int x = itheta; | |||
| 715 | int x0 = qn/2; | |||
| 716 | int ft = p0*(x0+1) + x0; | |||
| 717 | /* Use a probability of p0 up to itheta=8192 and then use 1 after */ | |||
| 718 | if (encode) | |||
| 719 | { | |||
| 720 | ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | |||
| 721 | } else { | |||
| 722 | int fs; | |||
| 723 | fs=ec_decode(ec,ft); | |||
| 724 | if (fs<(x0+1)*p0) | |||
| 725 | x=fs/p0; | |||
| 726 | else | |||
| 727 | x=x0+1+(fs-(x0+1)*p0); | |||
| 728 | ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft); | |||
| 729 | itheta = x; | |||
| 730 | } | |||
| 731 | } else if (B0>1 || stereo) { | |||
| 732 | /* Uniform pdf */ | |||
| 733 | if (encode) | |||
| 734 | ec_enc_uint(ec, itheta, qn+1); | |||
| 735 | else | |||
| 736 | itheta = ec_dec_uint(ec, qn+1); | |||
| 737 | } else { | |||
| 738 | int fs=1, ft; | |||
| 739 | ft = ((qn>>1)+1)*((qn>>1)+1); | |||
| 740 | if (encode) | |||
| 741 | { | |||
| 742 | int fl; | |||
| 743 | ||||
| 744 | fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta; | |||
| 745 | fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 : | |||
| 746 | ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | |||
| 747 | ||||
| 748 | ec_encode(ec, fl, fl+fs, ft); | |||
| 749 | } else { | |||
| 750 | /* Triangular pdf */ | |||
| 751 | int fl=0; | |||
| 752 | int fm; | |||
| 753 | fm = ec_decode(ec, ft); | |||
| 754 | ||||
| 755 | if (fm < ((qn>>1)*((qn>>1) + 1)>>1)) | |||
| 756 | { | |||
| 757 | itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1; | |||
| 758 | fs = itheta + 1; | |||
| 759 | fl = itheta*(itheta + 1)>>1; | |||
| 760 | } | |||
| 761 | else | |||
| 762 | { | |||
| 763 | itheta = (2*(qn + 1) | |||
| 764 | - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1; | |||
| 765 | fs = qn + 1 - itheta; | |||
| 766 | fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1); | |||
| 767 | } | |||
| 768 | ||||
| 769 | ec_dec_update(ec, fl, fl+fs, ft); | |||
| 770 | } | |||
| 771 | } | |||
| 772 | itheta = (opus_int32)itheta*16384/qn; | |||
| 773 | if (encode && stereo) | |||
| 774 | { | |||
| 775 | if (itheta==0) | |||
| 776 | intensity_stereo(m, X, Y, bandE, i, N); | |||
| 777 | else | |||
| 778 | stereo_split(X, Y, N); | |||
| 779 | } | |||
| 780 | /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. | |||
| 781 | Let's do that at higher complexity */ | |||
| 782 | } else if (stereo) { | |||
| 783 | if (encode) | |||
| 784 | { | |||
| 785 | inv = itheta > 8192; | |||
| 786 | if (inv) | |||
| 787 | { | |||
| 788 | int j; | |||
| 789 | for (j=0;j<N;j++) | |||
| 790 | Y[j] = -Y[j]; | |||
| 791 | } | |||
| 792 | intensity_stereo(m, X, Y, bandE, i, N); | |||
| 793 | } | |||
| 794 | if (*b>2<<BITRES3 && ctx->remaining_bits > 2<<BITRES3) | |||
| 795 | { | |||
| 796 | if (encode) | |||
| 797 | ec_enc_bit_logp(ec, inv, 2); | |||
| 798 | else | |||
| 799 | inv = ec_dec_bit_logp(ec, 2); | |||
| 800 | } else | |||
| 801 | inv = 0; | |||
| 802 | itheta = 0; | |||
| 803 | } | |||
| 804 | qalloc = ec_tell_frac(ec) - tell; | |||
| 805 | *b -= qalloc; | |||
| 806 | ||||
| 807 | if (itheta == 0) | |||
| 808 | { | |||
| 809 | imid = 32767; | |||
| 810 | iside = 0; | |||
| 811 | *fill &= (1<<B)-1; | |||
| 812 | delta = -16384; | |||
| 813 | } else if (itheta == 16384) | |||
| 814 | { | |||
| 815 | imid = 0; | |||
| 816 | iside = 32767; | |||
| 817 | *fill &= ((1<<B)-1)<<B; | |||
| 818 | delta = 16384; | |||
| 819 | } else { | |||
| 820 | imid = bitexact_cos((opus_int16)itheta); | |||
| 821 | iside = bitexact_cos((opus_int16)(16384-itheta)); | |||
| 822 | /* This is the mid vs side allocation that minimizes squared error | |||
| 823 | in that band. */ | |||
| 824 | delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid))((16384+((opus_int32)(opus_int16)((N-1)<<7)*(opus_int16 )(bitexact_log2tan(iside,imid))))>>15); | |||
| 825 | } | |||
| 826 | ||||
| 827 | sctx->inv = inv; | |||
| 828 | sctx->imid = imid; | |||
| 829 | sctx->iside = iside; | |||
| 830 | sctx->delta = delta; | |||
| 831 | sctx->itheta = itheta; | |||
| 832 | sctx->qalloc = qalloc; | |||
| 833 | } | |||
| 834 | static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b, | |||
| 835 | celt_norm *lowband_out) | |||
| 836 | { | |||
| 837 | #ifdef RESYNTH | |||
| 838 | int resynth = 1; | |||
| 839 | #else | |||
| 840 | int resynth = !ctx->encode; | |||
| 841 | #endif | |||
| 842 | int c; | |||
| 843 | int stereo; | |||
| 844 | celt_norm *x = X; | |||
| 845 | int encode; | |||
| 846 | ec_ctx *ec; | |||
| 847 | ||||
| 848 | encode = ctx->encode; | |||
| 849 | ec = ctx->ec; | |||
| 850 | ||||
| 851 | stereo = Y != NULL((void*)0); | |||
| 852 | c=0; do { | |||
| 853 | int sign=0; | |||
| 854 | if (ctx->remaining_bits>=1<<BITRES3) | |||
| 855 | { | |||
| 856 | if (encode) | |||
| 857 | { | |||
| 858 | sign = x[0]<0; | |||
| 859 | ec_enc_bits(ec, sign, 1); | |||
| 860 | } else { | |||
| 861 | sign = ec_dec_bits(ec, 1); | |||
| 862 | } | |||
| 863 | ctx->remaining_bits -= 1<<BITRES3; | |||
| 864 | b-=1<<BITRES3; | |||
| 865 | } | |||
| 866 | if (resynth) | |||
| 867 | x[0] = sign ? -NORM_SCALING1.f : NORM_SCALING1.f; | |||
| 868 | x = Y; | |||
| 869 | } while (++c<1+stereo); | |||
| 870 | if (lowband_out) | |||
| 871 | lowband_out[0] = SHR16(X[0],4)(X[0]); | |||
| 872 | return 1; | |||
| 873 | } | |||
| 874 | ||||
| 875 | /* This function is responsible for encoding and decoding a mono partition. | |||
| 876 | It can split the band in two and transmit the energy difference with | |||
| 877 | the two half-bands. It can be called recursively so bands can end up being | |||
| 878 | split in 8 parts. */ | |||
| 879 | static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X, | |||
| 880 | int N, int b, int B, celt_norm *lowband, | |||
| 881 | int LM, | |||
| 882 | opus_val16 gain, int fill) | |||
| 883 | { | |||
| 884 | const unsigned char *cache; | |||
| 885 | int q; | |||
| 886 | int curr_bits; | |||
| 887 | int imid=0, iside=0; | |||
| 888 | int B0=B; | |||
| 889 | opus_val16 mid=0, side=0; | |||
| 890 | unsigned cm=0; | |||
| 891 | #ifdef RESYNTH | |||
| 892 | int resynth = 1; | |||
| 893 | #else | |||
| 894 | int resynth = !ctx->encode; | |||
| 895 | #endif | |||
| 896 | celt_norm *Y=NULL((void*)0); | |||
| 897 | int encode; | |||
| 898 | const CELTModeOpusCustomMode *m; | |||
| 899 | int i; | |||
| 900 | int spread; | |||
| 901 | ec_ctx *ec; | |||
| 902 | ||||
| 903 | encode = ctx->encode; | |||
| 904 | m = ctx->m; | |||
| 905 | i = ctx->i; | |||
| 906 | spread = ctx->spread; | |||
| 907 | ec = ctx->ec; | |||
| 908 | ||||
| 909 | /* If we need 1.5 more bit than we can produce, split the band in two. */ | |||
| 910 | cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i]; | |||
| 911 | if (LM != -1 && b > cache[cache[0]]+12 && N>2) | |||
| 912 | { | |||
| 913 | int mbits, sbits, delta; | |||
| 914 | int itheta; | |||
| 915 | int qalloc; | |||
| 916 | struct split_ctx sctx; | |||
| 917 | celt_norm *next_lowband2=NULL((void*)0); | |||
| 918 | opus_int32 rebalance; | |||
| 919 | ||||
| 920 | N >>= 1; | |||
| 921 | Y = X+N; | |||
| 922 | LM -= 1; | |||
| 923 | if (B==1) | |||
| 924 | fill = (fill&1)|(fill<<1); | |||
| 925 | B = (B+1)>>1; | |||
| 926 | ||||
| 927 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, | |||
| 928 | LM, 0, &fill); | |||
| 929 | imid = sctx.imid; | |||
| 930 | iside = sctx.iside; | |||
| 931 | delta = sctx.delta; | |||
| 932 | itheta = sctx.itheta; | |||
| 933 | qalloc = sctx.qalloc; | |||
| 934 | #ifdef FIXED_POINT | |||
| 935 | mid = imid; | |||
| 936 | side = iside; | |||
| 937 | #else | |||
| 938 | mid = (1.f/32768)*imid; | |||
| 939 | side = (1.f/32768)*iside; | |||
| 940 | #endif | |||
| 941 | ||||
| 942 | /* Give more bits to low-energy MDCTs than they would otherwise deserve */ | |||
| 943 | if (B0>1 && (itheta&0x3fff)) | |||
| 944 | { | |||
| 945 | if (itheta > 8192) | |||
| 946 | /* Rough approximation for pre-echo masking */ | |||
| 947 | delta -= delta>>(4-LM); | |||
| 948 | else | |||
| 949 | /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */ | |||
| 950 | delta = IMIN(0, delta + (N<<BITRES>>(5-LM)))((0) < (delta + (N<<3>>(5-LM))) ? (0) : (delta + (N<<3>>(5-LM)))); | |||
| 951 | } | |||
| 952 | mbits = IMAX(0, IMIN(b, (b-delta)/2))((0) > (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2))) ? ( 0) : (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2)))); | |||
| 953 | sbits = b-mbits; | |||
| 954 | ctx->remaining_bits -= qalloc; | |||
| 955 | ||||
| 956 | if (lowband) | |||
| 957 | next_lowband2 = lowband+N; /* >32-bit split case */ | |||
| 958 | ||||
| 959 | rebalance = ctx->remaining_bits; | |||
| 960 | if (mbits >= sbits) | |||
| 961 | { | |||
| 962 | cm = quant_partition(ctx, X, N, mbits, B, | |||
| 963 | lowband, LM, | |||
| 964 | MULT16_16_P15(gain,mid)((gain)*(mid)), fill); | |||
| 965 | rebalance = mbits - (rebalance-ctx->remaining_bits); | |||
| 966 | if (rebalance > 3<<BITRES3 && itheta!=0) | |||
| 967 | sbits += rebalance - (3<<BITRES3); | |||
| 968 | cm |= quant_partition(ctx, Y, N, sbits, B, | |||
| 969 | next_lowband2, LM, | |||
| 970 | MULT16_16_P15(gain,side)((gain)*(side)), fill>>B)<<(B0>>1); | |||
| 971 | } else { | |||
| 972 | cm = quant_partition(ctx, Y, N, sbits, B, | |||
| 973 | next_lowband2, LM, | |||
| 974 | MULT16_16_P15(gain,side)((gain)*(side)), fill>>B)<<(B0>>1); | |||
| 975 | rebalance = sbits - (rebalance-ctx->remaining_bits); | |||
| 976 | if (rebalance > 3<<BITRES3 && itheta!=16384) | |||
| 977 | mbits += rebalance - (3<<BITRES3); | |||
| 978 | cm |= quant_partition(ctx, X, N, mbits, B, | |||
| 979 | lowband, LM, | |||
| 980 | MULT16_16_P15(gain,mid)((gain)*(mid)), fill); | |||
| 981 | } | |||
| 982 | } else { | |||
| 983 | /* This is the basic no-split case */ | |||
| 984 | q = bits2pulses(m, i, LM, b); | |||
| 985 | curr_bits = pulses2bits(m, i, LM, q); | |||
| 986 | ctx->remaining_bits -= curr_bits; | |||
| 987 | ||||
| 988 | /* Ensures we can never bust the budget */ | |||
| 989 | while (ctx->remaining_bits < 0 && q > 0) | |||
| 990 | { | |||
| 991 | ctx->remaining_bits += curr_bits; | |||
| 992 | q--; | |||
| 993 | curr_bits = pulses2bits(m, i, LM, q); | |||
| 994 | ctx->remaining_bits -= curr_bits; | |||
| 995 | } | |||
| 996 | ||||
| 997 | if (q!=0) | |||
| 998 | { | |||
| 999 | int K = get_pulses(q); | |||
| 1000 | ||||
| 1001 | /* Finally do the actual quantization */ | |||
| 1002 | if (encode) | |||
| 1003 | { | |||
| 1004 | cm = alg_quant(X, N, K, spread, B, ec | |||
| 1005 | #ifdef RESYNTH | |||
| 1006 | , gain | |||
| 1007 | #endif | |||
| 1008 | ); | |||
| 1009 | } else { | |||
| 1010 | cm = alg_unquant(X, N, K, spread, B, ec, gain); | |||
| 1011 | } | |||
| 1012 | } else { | |||
| 1013 | /* If there's no pulse, fill the band anyway */ | |||
| 1014 | int j; | |||
| 1015 | if (resynth) | |||
| 1016 | { | |||
| 1017 | unsigned cm_mask; | |||
| 1018 | /* B can be as large as 16, so this shift might overflow an int on a | |||
| 1019 | 16-bit platform; use a long to get defined behavior.*/ | |||
| 1020 | cm_mask = (unsigned)(1UL<<B)-1; | |||
| 1021 | fill &= cm_mask; | |||
| 1022 | if (!fill) | |||
| 1023 | { | |||
| 1024 | for (j=0;j<N;j++) | |||
| 1025 | X[j] = 0; | |||
| 1026 | } else { | |||
| 1027 | if (lowband == NULL((void*)0)) | |||
| 1028 | { | |||
| 1029 | /* Noise */ | |||
| 1030 | for (j=0;j<N;j++) | |||
| 1031 | { | |||
| 1032 | ctx->seed = celt_lcg_rand(ctx->seed); | |||
| 1033 | X[j] = (celt_norm)((opus_int32)ctx->seed>>20); | |||
| 1034 | } | |||
| 1035 | cm = cm_mask; | |||
| 1036 | } else { | |||
| 1037 | /* Folded spectrum */ | |||
| 1038 | for (j=0;j<N;j++) | |||
| 1039 | { | |||
| 1040 | opus_val16 tmp; | |||
| 1041 | ctx->seed = celt_lcg_rand(ctx->seed); | |||
| 1042 | /* About 48 dB below the "normal" folding level */ | |||
| 1043 | tmp = QCONST16(1.0f/256, 10)(1.0f/256); | |||
| 1044 | tmp = (ctx->seed)&0x8000 ? tmp : -tmp; | |||
| 1045 | X[j] = lowband[j]+tmp; | |||
| 1046 | } | |||
| 1047 | cm = fill; | |||
| 1048 | } | |||
| 1049 | renormalise_vector(X, N, gain); | |||
| 1050 | } | |||
| 1051 | } | |||
| 1052 | } | |||
| 1053 | } | |||
| 1054 | ||||
| 1055 | return cm; | |||
| 1056 | } | |||
| 1057 | ||||
| 1058 | ||||
| 1059 | /* This function is responsible for encoding and decoding a band for the mono case. */ | |||
| 1060 | static unsigned quant_band(struct band_ctx *ctx, celt_norm *X, | |||
| 1061 | int N, int b, int B, celt_norm *lowband, | |||
| 1062 | int LM, celt_norm *lowband_out, | |||
| 1063 | opus_val16 gain, celt_norm *lowband_scratch, int fill) | |||
| 1064 | { | |||
| 1065 | int N0=N; | |||
| 1066 | int N_B=N; | |||
| 1067 | int N_B0; | |||
| 1068 | int B0=B; | |||
| 1069 | int time_divide=0; | |||
| 1070 | int recombine=0; | |||
| 1071 | int longBlocks; | |||
| 1072 | unsigned cm=0; | |||
| 1073 | #ifdef RESYNTH | |||
| 1074 | int resynth = 1; | |||
| 1075 | #else | |||
| 1076 | int resynth = !ctx->encode; | |||
| 1077 | #endif | |||
| 1078 | int k; | |||
| 1079 | int encode; | |||
| 1080 | int tf_change; | |||
| 1081 | ||||
| 1082 | encode = ctx->encode; | |||
| 1083 | tf_change = ctx->tf_change; | |||
| 1084 | ||||
| 1085 | longBlocks = B0==1; | |||
| ||||
| 1086 | ||||
| 1087 | N_B /= B; | |||
| 1088 | ||||
| 1089 | /* Special case for one sample */ | |||
| 1090 | if (N==1) | |||
| 1091 | { | |||
| 1092 | return quant_band_n1(ctx, X, NULL((void*)0), b, lowband_out); | |||
| 1093 | } | |||
| 1094 | ||||
| 1095 | if (tf_change>0) | |||
| 1096 | recombine = tf_change; | |||
| 1097 | /* Band recombining to increase frequency resolution */ | |||
| 1098 | ||||
| 1099 | if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1)) | |||
| 1100 | { | |||
| 1101 | int j; | |||
| 1102 | for (j=0;j<N;j++) | |||
| 1103 | lowband_scratch[j] = lowband[j]; | |||
| 1104 | lowband = lowband_scratch; | |||
| 1105 | } | |||
| 1106 | ||||
| 1107 | for (k=0;k<recombine;k++) | |||
| 1108 | { | |||
| 1109 | static const unsigned char bit_interleave_table[16]={ | |||
| 1110 | 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3 | |||
| 1111 | }; | |||
| 1112 | if (encode) | |||
| 1113 | haar1(X, N>>k, 1<<k); | |||
| 1114 | if (lowband) | |||
| 1115 | haar1(lowband, N>>k, 1<<k); | |||
| 1116 | fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2; | |||
| 1117 | } | |||
| 1118 | B>>=recombine; | |||
| 1119 | N_B<<=recombine; | |||
| 1120 | ||||
| 1121 | /* Increasing the time resolution */ | |||
| 1122 | while ((N_B&1) == 0 && tf_change<0) | |||
| 1123 | { | |||
| 1124 | if (encode) | |||
| 1125 | haar1(X, N_B, B); | |||
| 1126 | if (lowband) | |||
| 1127 | haar1(lowband, N_B, B); | |||
| 1128 | fill |= fill<<B; | |||
| 1129 | B <<= 1; | |||
| 1130 | N_B >>= 1; | |||
| 1131 | time_divide++; | |||
| 1132 | tf_change++; | |||
| 1133 | } | |||
| 1134 | B0=B; | |||
| 1135 | N_B0 = N_B; | |||
| 1136 | ||||
| 1137 | /* Reorganize the samples in time order instead of frequency order */ | |||
| 1138 | if (B0>1) | |||
| 1139 | { | |||
| 1140 | if (encode) | |||
| 1141 | deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | |||
| 1142 | if (lowband) | |||
| 1143 | deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks); | |||
| 1144 | } | |||
| 1145 | ||||
| 1146 | cm = quant_partition(ctx, X, N, b, B, lowband, | |||
| 1147 | LM, gain, fill); | |||
| 1148 | ||||
| 1149 | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | |||
| 1150 | if (resynth) | |||
| 1151 | { | |||
| 1152 | /* Undo the sample reorganization going from time order to frequency order */ | |||
| 1153 | if (B0>1) | |||
| 1154 | interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks); | |||
| 1155 | ||||
| 1156 | /* Undo time-freq changes that we did earlier */ | |||
| 1157 | N_B = N_B0; | |||
| 1158 | B = B0; | |||
| 1159 | for (k=0;k<time_divide;k++) | |||
| 1160 | { | |||
| 1161 | B >>= 1; | |||
| 1162 | N_B <<= 1; | |||
| 1163 | cm |= cm>>B; | |||
| 1164 | haar1(X, N_B, B); | |||
| 1165 | } | |||
| 1166 | ||||
| 1167 | for (k=0;k<recombine;k++) | |||
| 1168 | { | |||
| 1169 | static const unsigned char bit_deinterleave_table[16]={ | |||
| 1170 | 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F, | |||
| 1171 | 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF | |||
| 1172 | }; | |||
| 1173 | cm = bit_deinterleave_table[cm]; | |||
| 1174 | haar1(X, N0>>k, 1<<k); | |||
| 1175 | } | |||
| 1176 | B<<=recombine; | |||
| 1177 | ||||
| 1178 | /* Scale output for later folding */ | |||
| 1179 | if (lowband_out) | |||
| 1180 | { | |||
| 1181 | int j; | |||
| 1182 | opus_val16 n; | |||
| 1183 | n = celt_sqrt(SHL32(EXTEND32(N0),22))((float)sqrt(((N0)))); | |||
| 1184 | for (j=0;j<N0;j++) | |||
| 1185 | lowband_out[j] = MULT16_16_Q15(n,X[j])((n)*(X[j])); | |||
| 1186 | } | |||
| 1187 | cm &= (1<<B)-1; | |||
| 1188 | } | |||
| 1189 | return cm; | |||
| 1190 | } | |||
| 1191 | ||||
| 1192 | ||||
| 1193 | /* This function is responsible for encoding and decoding a band for the stereo case. */ | |||
| 1194 | static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, | |||
| 1195 | int N, int b, int B, celt_norm *lowband, | |||
| 1196 | int LM, celt_norm *lowband_out, | |||
| 1197 | celt_norm *lowband_scratch, int fill) | |||
| 1198 | { | |||
| 1199 | int imid=0, iside=0; | |||
| 1200 | int inv = 0; | |||
| 1201 | opus_val16 mid=0, side=0; | |||
| 1202 | unsigned cm=0; | |||
| 1203 | #ifdef RESYNTH | |||
| 1204 | int resynth = 1; | |||
| 1205 | #else | |||
| 1206 | int resynth = !ctx->encode; | |||
| 1207 | #endif | |||
| 1208 | int mbits, sbits, delta; | |||
| 1209 | int itheta; | |||
| 1210 | int qalloc; | |||
| 1211 | struct split_ctx sctx; | |||
| 1212 | int orig_fill; | |||
| 1213 | int encode; | |||
| 1214 | ec_ctx *ec; | |||
| 1215 | ||||
| 1216 | encode = ctx->encode; | |||
| 1217 | ec = ctx->ec; | |||
| 1218 | ||||
| 1219 | /* Special case for one sample */ | |||
| 1220 | if (N==1) | |||
| 1221 | { | |||
| 1222 | return quant_band_n1(ctx, X, Y, b, lowband_out); | |||
| 1223 | } | |||
| 1224 | ||||
| 1225 | orig_fill = fill; | |||
| 1226 | ||||
| 1227 | compute_theta(ctx, &sctx, X, Y, N, &b, B, B, | |||
| 1228 | LM, 1, &fill); | |||
| 1229 | inv = sctx.inv; | |||
| 1230 | imid = sctx.imid; | |||
| 1231 | iside = sctx.iside; | |||
| 1232 | delta = sctx.delta; | |||
| 1233 | itheta = sctx.itheta; | |||
| 1234 | qalloc = sctx.qalloc; | |||
| 1235 | #ifdef FIXED_POINT | |||
| 1236 | mid = imid; | |||
| 1237 | side = iside; | |||
| 1238 | #else | |||
| 1239 | mid = (1.f/32768)*imid; | |||
| 1240 | side = (1.f/32768)*iside; | |||
| 1241 | #endif | |||
| 1242 | ||||
| 1243 | /* This is a special case for N=2 that only works for stereo and takes | |||
| 1244 | advantage of the fact that mid and side are orthogonal to encode | |||
| 1245 | the side with just one bit. */ | |||
| 1246 | if (N==2) | |||
| 1247 | { | |||
| 1248 | int c; | |||
| 1249 | int sign=0; | |||
| 1250 | celt_norm *x2, *y2; | |||
| 1251 | mbits = b; | |||
| 1252 | sbits = 0; | |||
| 1253 | /* Only need one bit for the side. */ | |||
| 1254 | if (itheta != 0 && itheta != 16384) | |||
| 1255 | sbits = 1<<BITRES3; | |||
| 1256 | mbits -= sbits; | |||
| 1257 | c = itheta > 8192; | |||
| 1258 | ctx->remaining_bits -= qalloc+sbits; | |||
| 1259 | ||||
| 1260 | x2 = c ? Y : X; | |||
| 1261 | y2 = c ? X : Y; | |||
| 1262 | if (sbits) | |||
| 1263 | { | |||
| 1264 | if (encode) | |||
| 1265 | { | |||
| 1266 | /* Here we only need to encode a sign for the side. */ | |||
| 1267 | sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; | |||
| 1268 | ec_enc_bits(ec, sign, 1); | |||
| 1269 | } else { | |||
| 1270 | sign = ec_dec_bits(ec, 1); | |||
| 1271 | } | |||
| 1272 | } | |||
| 1273 | sign = 1-2*sign; | |||
| 1274 | /* We use orig_fill here because we want to fold the side, but if | |||
| 1275 | itheta==16384, we'll have cleared the low bits of fill. */ | |||
| 1276 | cm = quant_band(ctx, x2, N, mbits, B, lowband, | |||
| 1277 | LM, lowband_out, Q15ONE1.0f, lowband_scratch, orig_fill); | |||
| 1278 | /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), | |||
| 1279 | and there's no need to worry about mixing with the other channel. */ | |||
| 1280 | y2[0] = -sign*x2[1]; | |||
| 1281 | y2[1] = sign*x2[0]; | |||
| 1282 | if (resynth) | |||
| 1283 | { | |||
| 1284 | celt_norm tmp; | |||
| 1285 | X[0] = MULT16_16_Q15(mid, X[0])((mid)*(X[0])); | |||
| 1286 | X[1] = MULT16_16_Q15(mid, X[1])((mid)*(X[1])); | |||
| 1287 | Y[0] = MULT16_16_Q15(side, Y[0])((side)*(Y[0])); | |||
| 1288 | Y[1] = MULT16_16_Q15(side, Y[1])((side)*(Y[1])); | |||
| 1289 | tmp = X[0]; | |||
| 1290 | X[0] = SUB16(tmp,Y[0])((tmp)-(Y[0])); | |||
| 1291 | Y[0] = ADD16(tmp,Y[0])((tmp)+(Y[0])); | |||
| 1292 | tmp = X[1]; | |||
| 1293 | X[1] = SUB16(tmp,Y[1])((tmp)-(Y[1])); | |||
| 1294 | Y[1] = ADD16(tmp,Y[1])((tmp)+(Y[1])); | |||
| 1295 | } | |||
| 1296 | } else { | |||
| 1297 | /* "Normal" split code */ | |||
| 1298 | opus_int32 rebalance; | |||
| 1299 | ||||
| 1300 | mbits = IMAX(0, IMIN(b, (b-delta)/2))((0) > (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2))) ? ( 0) : (((b) < ((b-delta)/2) ? (b) : ((b-delta)/2)))); | |||
| 1301 | sbits = b-mbits; | |||
| 1302 | ctx->remaining_bits -= qalloc; | |||
| 1303 | ||||
| 1304 | rebalance = ctx->remaining_bits; | |||
| 1305 | if (mbits >= sbits) | |||
| 1306 | { | |||
| 1307 | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | |||
| 1308 | mid for folding later. */ | |||
| 1309 | cm = quant_band(ctx, X, N, mbits, B, | |||
| 1310 | lowband, LM, lowband_out, | |||
| 1311 | Q15ONE1.0f, lowband_scratch, fill); | |||
| 1312 | rebalance = mbits - (rebalance-ctx->remaining_bits); | |||
| 1313 | if (rebalance > 3<<BITRES3 && itheta!=0) | |||
| 1314 | sbits += rebalance - (3<<BITRES3); | |||
| 1315 | ||||
| 1316 | /* For a stereo split, the high bits of fill are always zero, so no | |||
| 1317 | folding will be done to the side. */ | |||
| 1318 | cm |= quant_band(ctx, Y, N, sbits, B, | |||
| 1319 | NULL((void*)0), LM, NULL((void*)0), | |||
| 1320 | side, NULL((void*)0), fill>>B); | |||
| 1321 | } else { | |||
| 1322 | /* For a stereo split, the high bits of fill are always zero, so no | |||
| 1323 | folding will be done to the side. */ | |||
| 1324 | cm = quant_band(ctx, Y, N, sbits, B, | |||
| 1325 | NULL((void*)0), LM, NULL((void*)0), | |||
| 1326 | side, NULL((void*)0), fill>>B); | |||
| 1327 | rebalance = sbits - (rebalance-ctx->remaining_bits); | |||
| 1328 | if (rebalance > 3<<BITRES3 && itheta!=16384) | |||
| 1329 | mbits += rebalance - (3<<BITRES3); | |||
| 1330 | /* In stereo mode, we do not apply a scaling to the mid because we need the normalized | |||
| 1331 | mid for folding later. */ | |||
| 1332 | cm |= quant_band(ctx, X, N, mbits, B, | |||
| 1333 | lowband, LM, lowband_out, | |||
| 1334 | Q15ONE1.0f, lowband_scratch, fill); | |||
| 1335 | } | |||
| 1336 | } | |||
| 1337 | ||||
| 1338 | ||||
| 1339 | /* This code is used by the decoder and by the resynthesis-enabled encoder */ | |||
| 1340 | if (resynth) | |||
| 1341 | { | |||
| 1342 | if (N!=2) | |||
| 1343 | stereo_merge(X, Y, mid, N); | |||
| 1344 | if (inv) | |||
| 1345 | { | |||
| 1346 | int j; | |||
| 1347 | for (j=0;j<N;j++) | |||
| 1348 | Y[j] = -Y[j]; | |||
| 1349 | } | |||
| 1350 | } | |||
| 1351 | return cm; | |||
| 1352 | } | |||
| 1353 | ||||
| 1354 | ||||
| 1355 | void quant_all_bands(int encode, const CELTModeOpusCustomMode *m, int start, int end, | |||
| 1356 | celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses, | |||
| 1357 | int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res, | |||
| 1358 | opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, opus_uint32 *seed) | |||
| 1359 | { | |||
| 1360 | int i; | |||
| 1361 | opus_int32 remaining_bits; | |||
| 1362 | const opus_int16 * OPUS_RESTRICT__restrict eBands = m->eBands; | |||
| 1363 | celt_norm * OPUS_RESTRICT__restrict norm, * OPUS_RESTRICT__restrict norm2; | |||
| 1364 | VARDECL(celt_norm, _norm); | |||
| 1365 | celt_norm *lowband_scratch; | |||
| 1366 | int B; | |||
| 1367 | int M; | |||
| 1368 | int lowband_offset; | |||
| 1369 | int update_lowband = 1; | |||
| 1370 | int C = Y_ != NULL((void*)0) ? 2 : 1; | |||
| 1371 | int norm_offset; | |||
| 1372 | #ifdef RESYNTH | |||
| 1373 | int resynth = 1; | |||
| 1374 | #else | |||
| 1375 | int resynth = !encode; | |||
| 1376 | #endif | |||
| 1377 | struct band_ctx ctx; | |||
| 1378 | SAVE_STACK; | |||
| 1379 | ||||
| 1380 | M = 1<<LM; | |||
| 1381 | B = shortBlocks ? M : 1; | |||
| 1382 | norm_offset = M*eBands[start]; | |||
| 1383 | /* No need to allocate norm for the last band because we don't need an | |||
| 1384 | output in that band. */ | |||
| 1385 | ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm)celt_norm _norm[C*(M*eBands[m->nbEBands-1]-norm_offset)]; | |||
| 1386 | norm = _norm; | |||
| 1387 | norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset; | |||
| 1388 | /* We can use the last band as scratch space because we don't need that | |||
| 1389 | scratch space for the last band. */ | |||
| 1390 | lowband_scratch = X_+M*eBands[m->nbEBands-1]; | |||
| 1391 | ||||
| 1392 | lowband_offset = 0; | |||
| 1393 | ctx.bandE = bandE; | |||
| 1394 | ctx.ec = ec; | |||
| 1395 | ctx.encode = encode; | |||
| 1396 | ctx.intensity = intensity; | |||
| 1397 | ctx.m = m; | |||
| 1398 | ctx.seed = *seed; | |||
| 1399 | ctx.spread = spread; | |||
| 1400 | for (i=start;i<end;i++) | |||
| 1401 | { | |||
| 1402 | opus_int32 tell; | |||
| 1403 | int b; | |||
| 1404 | int N; | |||
| 1405 | opus_int32 curr_balance; | |||
| 1406 | int effective_lowband=-1; | |||
| 1407 | celt_norm * OPUS_RESTRICT__restrict X, * OPUS_RESTRICT__restrict Y; | |||
| 1408 | int tf_change=0; | |||
| 1409 | unsigned x_cm; | |||
| 1410 | unsigned y_cm; | |||
| 1411 | int last; | |||
| 1412 | ||||
| 1413 | ctx.i = i; | |||
| 1414 | last = (i==end-1); | |||
| 1415 | ||||
| 1416 | X = X_+M*eBands[i]; | |||
| 1417 | if (Y_!=NULL((void*)0)) | |||
| 1418 | Y = Y_+M*eBands[i]; | |||
| 1419 | else | |||
| 1420 | Y = NULL((void*)0); | |||
| 1421 | N = M*eBands[i+1]-M*eBands[i]; | |||
| 1422 | tell = ec_tell_frac(ec); | |||
| 1423 | ||||
| 1424 | /* Compute how many bits we want to allocate to this band */ | |||
| 1425 | if (i != start) | |||
| 1426 | balance -= tell; | |||
| 1427 | remaining_bits = total_bits-tell-1; | |||
| 1428 | ctx.remaining_bits = remaining_bits; | |||
| 1429 | if (i <= codedBands-1) | |||
| 1430 | { | |||
| 1431 | curr_balance = balance / IMIN(3, codedBands-i)((3) < (codedBands-i) ? (3) : (codedBands-i)); | |||
| 1432 | b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)))((0) > (((16383) < (((remaining_bits+1) < (pulses[i] +curr_balance) ? (remaining_bits+1) : (pulses[i]+curr_balance ))) ? (16383) : (((remaining_bits+1) < (pulses[i]+curr_balance ) ? (remaining_bits+1) : (pulses[i]+curr_balance))))) ? (0) : (((16383) < (((remaining_bits+1) < (pulses[i]+curr_balance ) ? (remaining_bits+1) : (pulses[i]+curr_balance))) ? (16383) : (((remaining_bits+1) < (pulses[i]+curr_balance) ? (remaining_bits +1) : (pulses[i]+curr_balance)))))); | |||
| 1433 | } else { | |||
| 1434 | b = 0; | |||
| 1435 | } | |||
| 1436 | ||||
| 1437 | if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0)) | |||
| 1438 | lowband_offset = i; | |||
| 1439 | ||||
| 1440 | tf_change = tf_res[i]; | |||
| 1441 | ctx.tf_change = tf_change; | |||
| 1442 | if (i>=m->effEBands) | |||
| 1443 | { | |||
| 1444 | X=norm; | |||
| 1445 | if (Y_!=NULL((void*)0)) | |||
| 1446 | Y = norm; | |||
| 1447 | lowband_scratch = NULL((void*)0); | |||
| 1448 | } | |||
| 1449 | if (i==end-1) | |||
| 1450 | lowband_scratch = NULL((void*)0); | |||
| 1451 | ||||
| 1452 | /* Get a conservative estimate of the collapse_mask's for the bands we're | |||
| 1453 | going to be folding from. */ | |||
| 1454 | if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE(3) || B>1 || tf_change<0)) | |||
| 1455 | { | |||
| 1456 | int fold_start; | |||
| 1457 | int fold_end; | |||
| 1458 | int fold_i; | |||
| 1459 | /* This ensures we never repeat spectral content within one band */ | |||
| 1460 | effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N)((0) > (M*eBands[lowband_offset]-norm_offset-N) ? (0) : (M *eBands[lowband_offset]-norm_offset-N)); | |||
| 1461 | fold_start = lowband_offset; | |||
| 1462 | while(M*eBands[--fold_start] > effective_lowband+norm_offset); | |||
| 1463 | fold_end = lowband_offset-1; | |||
| 1464 | while(M*eBands[++fold_end] < effective_lowband+norm_offset+N); | |||
| 1465 | x_cm = y_cm = 0; | |||
| 1466 | fold_i = fold_start; do { | |||
| 1467 | x_cm |= collapse_masks[fold_i*C+0]; | |||
| 1468 | y_cm |= collapse_masks[fold_i*C+C-1]; | |||
| 1469 | } while (++fold_i<fold_end); | |||
| 1470 | } | |||
| 1471 | /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost | |||
| 1472 | always) be non-zero. */ | |||
| 1473 | else | |||
| 1474 | x_cm = y_cm = (1<<B)-1; | |||
| 1475 | ||||
| 1476 | if (dual_stereo && i==intensity) | |||
| 1477 | { | |||
| 1478 | int j; | |||
| 1479 | ||||
| 1480 | /* Switch off dual stereo to do intensity. */ | |||
| 1481 | dual_stereo = 0; | |||
| 1482 | if (resynth) | |||
| 1483 | for (j=0;j<M*eBands[i]-norm_offset;j++) | |||
| 1484 | norm[j] = HALF32(norm[j]+norm2[j])(.5f*(norm[j]+norm2[j])); | |||
| 1485 | } | |||
| 1486 | if (dual_stereo) | |||
| 1487 | { | |||
| 1488 | x_cm = quant_band(&ctx, X, N, b/2, B, | |||
| 1489 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
| 1490 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, x_cm); | |||
| 1491 | y_cm = quant_band(&ctx, Y, N, b/2, B, | |||
| 1492 | effective_lowband != -1 ? norm2+effective_lowband : NULL((void*)0), LM, | |||
| 1493 | last?NULL((void*)0):norm2+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, y_cm); | |||
| 1494 | } else { | |||
| 1495 | if (Y!=NULL((void*)0)) | |||
| 1496 | { | |||
| 1497 | x_cm = quant_band_stereo(&ctx, X, Y, N, b, B, | |||
| 1498 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
| 1499 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm); | |||
| 1500 | } else { | |||
| 1501 | x_cm = quant_band(&ctx, X, N, b, B, | |||
| 1502 | effective_lowband != -1 ? norm+effective_lowband : NULL((void*)0), LM, | |||
| 1503 | last?NULL((void*)0):norm+M*eBands[i]-norm_offset, Q15ONE1.0f, lowband_scratch, x_cm|y_cm); | |||
| 1504 | } | |||
| 1505 | y_cm = x_cm; | |||
| 1506 | } | |||
| 1507 | collapse_masks[i*C+0] = (unsigned char)x_cm; | |||
| 1508 | collapse_masks[i*C+C-1] = (unsigned char)y_cm; | |||
| 1509 | balance += pulses[i] + tell; | |||
| 1510 | ||||
| 1511 | /* Update the folding position only as long as we have 1 bit/sample depth. */ | |||
| 1512 | update_lowband = b>(N<<BITRES3); | |||
| 1513 | } | |||
| 1514 | *seed = ctx.seed; | |||
| 1515 | ||||
| 1516 | RESTORE_STACK; | |||
| 1517 | } | |||
| 1518 |